AI独学ロードマップの生存率は5% ― 「わかったつもり」を防ぎ完走するための生存戦略

チャットボットを使うだけのAIユーザー、APIを使ってブラックボックスだがAIエンジニアっぽい事を出来る状態から抜け出すための算数から大学数学をしっかり学び、AI関連論文に書かれているような内容を数学的に理解して、自分でAIサービスの実装を出来るようにするまでのロードマップを3本シリーズでまとめました。

このロードマップの概要は「数学ゼロから始めるAI理解の独学ロードマップ — 1年で理論も実装も攻略」で解説しました。
そのロードマップで失敗しないために何を理解すべきか、どう学習していくかの補足を「AIを「使うだけ」で終わらせないために ― 数学ゼロから始めるAI理解ロードマップの補足解説」で解説しました。
そして、数学学習はAIだけでなく様々なシミュレーション、構造解析などの科学技術計算でも役立つ事を「AI学習のその先へ ― 「科学技術計算」というもう一つの強力な武器」で解説しました。

AI学習を1年間完走出来るのは10%以下

この学習は数ヶ月では無く1年ほどの学習を必須にしています。
社会人が1日2時間ほど学習することを前提にしたロードマップで、継続はかなり厳しい物ですが、やる気がある人なら実現は可能なレベルの物です。

しかし、分数の割り算の意味をしっかり理解するとか、マイナス×マイナスがプラスになる事を理解しましょうというレベルから始まります。

一般の方の多くはそんなルールは知っているからと、ロードマップはすっ飛ばして、いきなり高校数学の復習から入ってしまうと思います。
また、1年間の学習をしっかりやろうとしたとしてもかなりの割合が脱落して、1年間を完走出来るのは1割いればいい方。そして、追加で科学技術計算なども含めた学習を追加でさらに1年出来るのはそのうちの半分以下になる。
つまり、1000人が同じ状態からスタートしても、AIによるシミュレーションでも、2年間を完走できるのは1000人中50人ほどという結果が出ました。

好奇心旺盛な方の多くは高校数学でわかるAI・機械学習みたいな内容を読んで、高校数学を軽く読み流して、大学レベルの数学の中身はあまり理解しないで、AIの挙動をわかった気で終わらせてしまっていると思います。

そうならないために、しっかりと数学を理解して、AI関連の論文の内容を理解出来るようにするのがこの一連の投稿の目的です。

AI学習を完走するための基本的なアドバイス

まず重要になるのが、大学レベルの数学を理解出来る数学の基礎を作る事です。

そのためには高校レベルの数学が必要になりますが、その高校レベルの数学も、基礎が必要になります。
問題は高校数学は数学の概念をあまり理解していなくても、解き方さえわかれば、合格点はとれてしまい、自分は数学がわかった気になってしまうことです。

「理解」と「前進」のバランス ― わからない時は一旦進む

例えば小学校の算数で習う分数の割り算は、逆数をかけているということを知らなくても高校数学は乗り切れます。しかし、それからしばらくして大学で線形代数を学習すると逆行列が出てきます。ここで逆数(逆行列)をかけることで「割り算」と同じ操作を行うという概念がでてきますが、小学校レベルの数学の概念をしっかり理解していないと、このような部分で壁にぶち当たってしまう可能性があります。

逆数自体は、小学校での分数の割り算で出てきますが、この概念は中学校での方程式、高校での関数など様々なところで出てきています。

そのために、小学校や中学校で学習するレベルの内容はただ計算ができるだけではなく、各段階で、なぜこうなるのかの疑問を持つことが重要です。

Gemini作 数学のなぜとそれが大学数学にどうつながるか

とはいえ、それを学習した時点では、そういったこと自体の疑問を感じない場合もありますし、理屈を説明されてもなんだかスッキリしないこともあると思います。
そこを今すぐに完璧にしようとせずに、今の理解はそこまでにとどめて、次に進むことも重要です。先に進んでから戻ってみると、それまでの学習の積み重ねで案外すぐに理解出来てしまうこともあります。

ポイント よくわからなかったらとりあえず次に進む

なぜ今、高校数学なのか? ― 「AIのための」復習法

中学校レベルまでの数学をやり直したら、高校レベルにすすみます。高校レベルではAI関連で必要ない部分もありますが、どのような内容なのかをさらっとすべて見ておくくらいはしておいた方がいいでしょう。

数学Iなら、二次関数グラフ、最大・最小、三角関数、平方完成などを中心に学習します。高校数学を学習している中で、なぜやり直しをしなければいけないのか、このくらいの理解で十分ではという疑問を持った場合、とりあえず大学数学の線形代数などにすすんでみてください。

大学での線形代数、微積分、行列が何の疑問も無くスラスラ学習できるようなら高校数学の復習は必要ありません。多くの方は高校レベルの基礎が欠けているとか、前述した小学校レベルの算数の概念をしっかり理解していないとかの理由で、大学レベルの数学の壁に当たります。

AIなどは関係なく、高校までの数学を公式の丸暗記と計算力だけで乗り切った方も、大学での抽象化された数学のイメージがつかめずに脱落してしまう場合もあるようです。
それまで数学は計算ルールを覚えて、計算が出来ればいいとだけ考えていた場合は、数学はその定義を理解する物だと切り替えて、学習の方向性を修正しましょう。

各段階での「現在地」確認 ― 基礎の穴を見逃さない

高校レベルの学習をおろそかにすると大学レベルの数学で必ず壁にぶちあたります

この学習ロードマップでは中学、高校レベルの復習をしっかり行います。特に高校レベルの復習は3ヶ月ほどかけて復習する前提になっています。
多くの方は学習量を最小限にするために、高校レベルの学習は最小限にしようとします。

その結果、大学レベルの数学がちんぷんかんぷんな状態に陥ります。
やさしくわかるAI・機械学習などの本では詳しく説明しており、何となくわかった感を得られるので、自分はわかっているような気がしますが、実際の理解はかなり浅い状態です。

後述しますが、大学レベルの数学で疑問が出たら、高校レベルなどに戻って基本的な部分の確認が必要になります。
基礎が出来ていない場合、自分はどこを理解していないのか、どこまで戻ればいいのか、そもそもどの基礎に戻るべきなのかの判断が出来ません。

ポイント 中学・高校レベルの数学は一通りしっかりとおさらいしよう

この段階で全体の4割が学習を続けられずに脱落すると推定されます。

「スパイラル学習」のすすめ ― 基礎と応用を行き来する

大学レベルの数学で、ここまで残った4割の中から3割は脱落すると推定されます。つまり残っているのは1割です。その原因は公式の丸暗記などでは対応出来ない、抽象化された大学の数学です。

方向としてはとりあえず何となく理解して、基本的な問題は解けるようになる、その定義は何かを理解しようとするの繰り返ししていけば理解が深まります。
このような学習をスパイラル学習(螺旋型学習)といいます。

例えばAIで損失関数、誤差を最小にするための微分の勾配降下法(Gradient Descent)があります。

勾配を計算して損失関数の谷底へ降りて最適解にいくイメージをもった状態で、とりあえず数式を計算してみます。
この計算を手計算する必要はありません。Pythonを電卓代わりに使って入力する数値を変えるとどうなるかを実際に見ていきます。
数式にマイナスがありますが、このあたりでなぜマイナスかと気づくことも重要です。
何度か計算してイメージが固まってきたら、また定義に戻ってみます。

ここで初めより理解が深まっている状態なのかを確認します。
よくわからない場合は、高校数学に戻ります。二次関数のグラフを書き、微分の接線の傾きを求めてみます。
ここでもPythonを使って、数字を変えながらどうなっていくかを理解します。
特にプラスやマイナスでどうなるかを確認するのが重要です。

このように、大学レベルの数学理解に疑問が出たら、その基礎となる学問で基礎的な計算を実際にやってどうなるかのイメージをつかむことが重要です。

この計算では、なぜその式では谷底に向かっていくのか誤差が最小になるのかが実際に理解できるようになります。
このように徐々に理解が深まります。

ポイント 大学レベルの数学の教科書で悩み続けるのは止めて基礎に戻る

AIの実践まで来たらあとは継続学習

Deep Learningの実践まで来たら脱落者はかなり減ります。

ただし、大学数学をある程度理解している事が前提となります。

関連書籍で出てくる数式の意味がわかり、なぜこの計算が必要なのかを理解して、すすめていけない場合は、必ず数学の学習に戻りましょう。

その上でこのレベルで脱落してしまうのは、実践環境の構築、関連情報を調べた際の、日本語での情報不足になっていきます。英語圏では無料で利用出来るコンテンツも多いですが、日本語の場合は一部に優良な無料コンテンツもありますが、有料の書籍などが必要になることが多いです。

英語での情報検索、有料書籍の購入、有料サービスとはいえ月に数千円レベルのコストをしっかりとかけて学習を継続しましょう。

この後はモチベーションが続く限り学習を継続出来ます。
ここまで来ると、自分に必要なら続けるし、必要なく今学習した内容を実践でより深めていくような形になります。

冒頭のAIのシミュレーションでは1日2時間の学習を2年間学習を継続して、AIと科学技術計算の基礎を学べる人は5%と推定しています。

今後の学習では最新の論文は英語になるので、新しい情報をすぐにキャッチアップしたい場合は、英語の少なくとも読解や、最新情報の収集も重要です。

ポイント モチベーションが続く限り学習を継続、英語学習も重要です

AI独学ロードマップの生存率は5% ― 「わかったつもり」を防ぎ完走するための生存戦略” に1件のフィードバックがあります

  1. ピンバック: AIを「使うだけ」で終わらせないために ― 数学ゼロから始めるAI理解ロードマップの補足解説 | Masaru Kamikura Blog

コメントを残す

このサイトはスパムを低減するために Akismet を使っています。コメントデータの処理方法の詳細はこちらをご覧ください